Search results

Search for "carbon–boron bond formation" in Full Text gives 3 result(s) in Beilstein Journal of Organic Chemistry.

Recent advances in Cu-catalyzed C(sp3)–Si and C(sp3)–B bond formation

  • Balaram S. Takale,
  • Ruchita R. Thakore,
  • Elham Etemadi-Davan and
  • Bruce H. Lipshutz

Beilstein J. Org. Chem. 2020, 16, 691–737, doi:10.3762/bjoc.16.67

Graphical Abstract
  • yields (Scheme 48). They proposed a mechanism in which LCu(I)–Si coordinates first with the triple bond, which eventually forms a monosilylated diene. The resulting organocopper species then participates in a second catalytic cycle to furnish the disilylated products [86]. 2 Cu-catalyzed carbonboron
  • bond formation Organoboron compounds are widely used in C–C and C–X (X = N, O) bond constructions. Straightforward methods for their synthesis involve the copper-catalyzed addition of organoboron compounds to alkynes, alkenes, and unsaturated carbonyl compounds, as well as the nucleophilic borylation
PDF
Album
Review
Published 15 Apr 2020

Atom-economical group-transfer reactions with hypervalent iodine compounds

  • Andreas Boelke,
  • Peter Finkbeiner and
  • Boris J. Nachtsheim

Beilstein J. Org. Chem. 2018, 14, 1263–1280, doi:10.3762/bjoc.14.108

Graphical Abstract
  • boron bond formation gives one equivalent of arylboronic ester 4 and an iodoarene 2 through a metal-free boron arylation. Subsequent cross coupling under Suzuki conditions affords symmetrical biphenyls 3’ in good yields. Due to the temporary introduction and cleavage of the boron moiety the formal atom
  • utility is limited since it requires highly reactive boron compounds as nucleophiles. Symmetrical biphenyls 3’ can be generated from the corresponding symmetrically substituted diaryliodonium salts 1 and bis(pinacolato)diboron as demonstrated by Muñiz and co-workers [25]. In the first step, a mild carbon
PDF
Album
Review
Published 30 May 2018

Chiral Cu(II)-catalyzed enantioselective β-borylation of α,β-unsaturated nitriles in water

  • Lei Zhu,
  • Taku Kitanosono,
  • Pengyu Xu and
  • Shū Kobayashi

Beilstein J. Org. Chem. 2015, 11, 2007–2011, doi:10.3762/bjoc.11.217

Graphical Abstract
  • substrates were suitable despite being insoluble in water. Keywords: carbonboron bond formation; catalytic asymmetric synthesis; chiral copper(II) catalysis; β-hydroxy nitriles; Introduction In recent years, optically active organoboranes have attracted considerable attraction as versatile synthons for
PDF
Album
Supp Info
Full Research Paper
Published 27 Oct 2015
Other Beilstein-Institut Open Science Activities